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Computing a non-Maxwellian velocity distribution from first principles
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We investigate a family of single-particle anomalous velocity distribution by solving a particular class of
stochastic Liouville equations. The stationary state is obtained analytically and the Maxwell-Boltzmann distri-
bution is reobtained in a particular limit. We discuss the comparison with other different methods to obtain the
stationary state. Extensions when the models cannot be solved in an exact way are also pointed out in
connection with the one-ficton approximation.
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[. INTRODUCTION color noise the only way to get nonvanishing diffusivity is in
the simultaneous limita>— % and\ — o, in such a way that

In recent years there has been an increasing interest @(2\) =D (but this is just the white-noise cgséNote
understanding anomalous velocity distributiongon-  that it is_a quite different matter to define a new Markov
Maxwellian) that appear—quite ubiquitously—in many dif- process V(t) to mimic—in the best way—the non-
ferent subjects of science; for example, in the study of out oMarkovian oneV(t). It is well known that such a Markov sp
equilibrium (vibrated granular mattef1], in the analysis of V(t) exists and fulfills(in the leading ordgra Fokker-Planck
out of equilibrium rodlike thermal molecules rotating freely equation with arenormalized diffusivity D=a?/(y+2\)
in a plane[2,3], and in the study of physiological systems (see appendix D of van Kampen’s pap&}). Therefore if we
[4], etc. In many of these cases the correlation funcfmin  want to find a “softer” description for the random accelera-
the relevant variableV(t)] decays in time with some tions of thegeneralizedRayleigh particle, we should lift the
stretched exponential function; in a similar context, the probhypothesis of Gaussian noise; this fact will immediately lead
ability distributions show non-Maxwellian profiles, or they to a non-Maxwellian(anomaloug velocity profile; for ex-
can also show long tails in the configurational velocity spaceample, anatural cutoff for the velocity distribution will ap-

V. pear if the random accelerations are finite.

It is well known that the MaxwellBoltzmann) distribu- In the context of ayeneralizedRayleigh particle we have
tion can be derived by various statistical methd8§ In studied the time relaxation of its correlation function, and we
particular, the time evolution of the single-particle Maxwell have proved that if we model the stochastic procé@3 by
distribution can be analyzed by using the Langevin equatiom generalized Ornstein-Uhlenbeck process, where the fluc-
or equivalently by using the Fokker-Planck scheffg in  tuations of the bath are characterized by any arbitrary noise
both approaches the important points are that the “dynamé(t) (not necessarily Gaussignthe exact solution of the
ics” for the velocity is linear and the fluctuations from the system is given in terms of the characteristic functional
thermal bathare Gaussian. Therefore—as expected—the veG([z(¢)]); i.e., let the stochastic differential equatisde
locity distribution of the Rayleigh particle is Gaussian at all of the process be
times. A signature of this model is tlengular character of
the random acceleration that the Rayleigh particle feels from dV_ Y 0 1
the thermal bath; of course this is a necessary condition in a7 T, =0, @
order to have a Markovian stochastic procésgy V(t). In
other words, the white-noise nature of the random acceleravhere §(t) is an arbitrary noise characterized by its func-
tion leads to a nonvanishing diffusivity tional

G,,:([k<-)]>=<expi f:kmg(t) dt> ;
P &(*)])

This is nothing more than a necessary condition to obtain theere the notatiorG.([k()]) emphasizes thak(t) is a test
Fokker-Planck equation. function. Then the functional of the procegét) is given by
On the other hand, if we assumeganeralizedRayleigh  [9,10]
particle with a more “realistic” correlation function associ-
ated to some external noise, let us say, for example, a color- A= atikoV “ t—s
noise correlation functiony(7)=aexp(—2\|7), the diffu- CGv([z(+))=e""¢ 06‘5( ft e’"92(s) ds
sivity constantD vanishes. It is simple to prove that using a
whereVy is the initial condition of the spy/(t) andk, is a
functional of the test functionz(t), given by kg
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The exact formuld2) solves the problem in a closed way, *a; then its stationary correlation function is
but of course the difficulty lies in the fact that there are not

so many closed expressions for the noise characteristic func- (E(t+ ) E(t))=aexp(—2\]|7]). 4
tional G¢([k(*)]). Among the many cases that we have been ) ) ) .
able to work out are: linear sde driven bywyenoise[11], Introducing the series expression®f([k(+)]) in Eq.(2),

sde associated with Specia| boundary Conditibhz], and for example, we have shown that the Stationary tWO-pOint

also second-order sde driven by arbitrary no{$esj, etc. In  correlation function of the sp/(t) can written in the fornj9]

all of these cases we have been able to calculate correlation

functions and higher-order moments and cumulants. In this _

paper, the problem that we want to tackle is different because (vt nVD))

we want to know something more about the associated prob-

ability distributions, particularly we are interested in the one-In general, higher-order cumulants can also be obtained by

time probability densityP(V,t) in order to see whether its taking higher-order functional derivatives of Gy([ z()]).

behavior is anomalous or not. Note that if we had a closedNevertheless, to write the corresponding probability distribu-

expression for the functional([k(+)]), the probability tion from the information of all these moments is a nontrivial

density P(V,t) could be obtained by quadrature from Eq. task, thus we are going to bypass this difficulty by introduc-

(2), i.e., by Fourier inversion, ing an alternative procedure, which in principle is useful—at
least—for the one-time probability distribution.

2

a—e— Y7l (5)
Y(2h+y) '

1 o0
P(V1,t)= EJ va([Z('): kis(t—t1)]) A. Computing the probability distribution

In order to calculate the evolution equation of the one-
time probability distributionP(V,t), we start from the sto-

chastic Liouville equation associated to , SO definin
From this formula, and for any nois€t), we can calculate p(V,t;: 5|(\L/nﬁ V[t,gtj')]l) we haVIe w e

in an exact manneall the one-time cumulants of sy(t).

We emphasize that the probability distributiBiiV,,t;) de- ap(V,t) )

pends on the initial conditioW(to=0)=V,, note however, " W[VP(V,I)]:O,

that due to the intrinsic preparation of the system, this distri-

bution is not the propagatoR(V,t1|Vo,to); this is so be-  \yhich is equivalent to

cause in general the system could be non-Markovian. In par-

ticular, in Ref.[13] we have found theexact stationary ap(V,t)

nonequilibrium probability distributiodPs,(V), for the gen- i T oyl VHEDp(VD]=0. (6)
eral case when the noise is Gaussian and the correlation is an

arbitrary functiony(t) (not necessarily exponentialThen, sing van Kampen’s lemmgs,7] it follows that the evolu-
for example, it is possible to see that the one-time probability;,, equation for the distribution

distribution is Gaussian—as expected—but the dispersion,

X exp(—ik,Vy)dK, . 3)

(V(t)?), strongly depends on the character of the correlation P(V,1)=(8(V—V[t,&(*)]))
function of the bath, in particular this fact leads to the defi-
nition of strongly or weakly non-Markoviamynamics. is
IP(V,t) J d
Il. MODELING THE THERMAL BATH WITH
—y—=[VP(V,t)]=—( £&(t) —=p(V,1) ), (7
DICHOTOMOUS NOISE: EXACT RESULTS ot yr?V[ (V.0] <§( )(9Vp( )> ™

If the noiseé(t) is a dichotomous process, characterizedynere the average is over the ensen®ig(+)]). In order

by a hopping transition rate, all the cumulants of sp'(t)  to work out this equation we first solve the following Green
can be calculated. Nevertheless, because the charactensﬂpomem:
functional of this noise cannot be expressed in a closed form
[it is only possible to write down a series expression for J J
G([k(*)]) [9]], we cannot easily calculate the associated {ﬁ—)’— VVQ_V}G(V-Vl;t_tl):5(V_V1)5(t_t1).
one-time probability distribution using E@3); so here we ®)
are going to tackle this problem from a different point of
remark that a dichotomous sp is a good candidate to model a
thermal bath when thénite character of the random accel- G(V,Vy t—t))=ert" g vert-t v, ]10(t—t,),
erations and the nonwhite correlation of the noise are impor- 9)
tant facts to be considered.

If the noise&(t) in Eqg. (1) is a symmetric Langevin-like and®(t) is the step function.
force (producing finite acceleratiopsit is quite natural to The integral solution of Eq(6) can be written, with the
model thethermal bathwith a dichotomous noise of values help of the Green functiof®), in the form
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+ o t J
p(V,t) :PO(V,t) - fﬁx dvlfodtle(VNl ;t_tl)g(tl)avlp(vl ta), (10

where[ d/at—y— yV(alaV)]p°(V,t)=0. Now we can introduce Eq10) into the right-hand side of Ed7),

IP(V,t d ,
. )—yaV[VP<Vt>]——< t)&vp(V,t)>+<§(t) | T dnevvit- e e )>. (1Y

Working out the ensemble average we arrive at

IP(V,1)

4 e t #*p(V1,t)
—yog[VP(V,)]=| dVi| dt;G(V,Vyt—t )ey<“‘1>< E(DE(t )—>, (12
7 N J_m lJo ! v Yoo

where we have used the fact that in the integral we can repladé— e "(4/9V,). Now, because the noisgt) is a
dichotomous sp we can use the Bourret-Frisch-Pouquet thgdeif to split the average in two parts; and thus we get the
following exactequation:

IP(V,1) 1%
Sy vRvnl- |

+ oo

dvlf dt,G(V,V,;t—t,)et™ t1><g(t)g(t1)>% (13)

1

Integrating ovedV,, changing the variable=t—t;, and  This formula is useful to calculate the stationary distribution
using the fact that the correlation function is stationaryof the spV(t), i.e.,

(E(t) &(t1))=x(t—ty), we can write

IP(V,1) d t 92 P.(V)=P(V,t—o)=limuP(V,u).
=y lVRVO1= [ x(n) - Pveri- s V)ZPV ) = Im PtV L)

Now, introducing the operator identityP(Ve'",t—r) .
— exp yM(dlV)JP(V,t—1), and using that Therefo.re usmg_Eq(lS) and the Laplace transform of the
correlation function(4),

92 d
EY AR

n (7 n (92
(VW 2) ey n=0,12..., .

N x(wW=L[a%exp —2\|t)]=a%(u+2n) 71,
from Eq.(13), after some algebra, we finally obtain

the stationary differential equation for the probability distri-
bution adopts the form

J ?Pg(V)
[ fpuo-et

(16)

JP(V,1) 0 t J
at —yav[VP(V t)]—f x(7)exp yr VW+2

><aZP(v,t—T) g 14 p
————UurT.
aV?2 H ’y(Va—V'f'Z

This is the exact evolution equation for the one-time prob-
ability distribution of the generalized Ornstein-Uhlenbeck
procesq1), when the thermal bath is modeled by a symmet-
ric dichotomous noise. Now with the help of the Laplace
transform, [ge ‘”tf(t)dtzﬁu[f(t)]zf[u], we can rewrite
this equation in the form

+ 2\

To find the solution of this equation we try a normalized
function of the form

P(V)=M1-BV?)A (17
uP(V,u)—P(V,0)— Yoy [VP(V u)]

Note that, in order to have a well defined probability distri-
(15) bution Pg(V) some care must be taken in the definition of

V_
V2 the domain of the distribution. Inserting E@Q.7) in Eq. (16)

XU NV

( d 2”02ﬁ>(v,u).
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and using that (+ BV?)#0, it is possible to prove, for any It is interesting to remark that even when the two-point
A>—1, that the constant8 and A are given by correlation function5) does not show any “strange” behav-
ior, the corresponding two-time joint probability distribution
0% should do so. This fact is simple to understand considering
B= ? and A= ; -1 the one-time probability distribution; for example, if we cal-
culate the one-time moment¥/(t)"),¥n we would not see

This implies a natural cutoff in the domain of the velocity, @1 Strange behavior; it is only when we sum all the mo-
which is characterized by the valué,=+a/y [this is a Ments appearing in Ed3) that an anomalous behavior is
clear consequence of the signature of timte random ac- built up in its one-time probability distribution, as shown in
celerations occurring in the sd@)]. On the other hand the the corresponding stationary distributios). _ .
distribution P4,(V) will be a convex or concave function AN important question is whether it is possible to find
depending on the value of the ratéy; both behaviors can another family of anomalous velocity distributions from first

be understood heuristically. The casky<1 means that the Principles as we have shown here. Unfortunately, only few
noise correlatior\ ~* is large compared to the dissipation stochastic processes can be worked out exactly as we have

time scalexy~!, then the noise can be considered stronglyd(?rr‘]e r‘]’Y'th the dlChOtOnp]OUlst_p, tlhus if we want tohgo ahead
persistentstatic limit) so we can approximat(t) by a con- with this program we should implement some stochastic per-

stant in the sd&1); from this fact it follows that asymptoti- turbation theory. This fact has extensively been worked out
since the pioneer work of Kraichnan when he studied the

cally |V|~al/y. Therefore, the invariant measure shows a .
y Vi Y problem of turbulencd18], Bourret in the study of wave

divergence at the points a/y. The opposite case,/y>1, o
applies when the noise is a fluctuating process on the disspropagation in rfandom med[a_g], KUbO when he _tackled
he problem of linear stochastic differential equati$as],

pative time scale, and then it is highly improbable to reach b . K , lant ol A i
the extreme “deterministic” value¥y = *=a/vy; that is the or by using van Kampen's cumulant expans{@i]. A rig-

reason why, whem/y>1, the stationary probability distri- orous.review showing the “evqlution" of the stochastip per-

bution goes suddenly to zero fof—V,. turbatlon theqry can b_e seen in R_érﬁ]. In the foIIovymg _
It should be emphasized that the time-dependent structm%ectlon we discuss briefly a possible way of working this

of the corresponding one-time probability distribution program.

P(V,t) is highly complex due to the occurrence of rare

events; these events correspond to the stochastic realizations B. Discussion

when the dichotomous noise is constant for a long time be- ) ] ) .

fore jumping—for the first ime—to a different value. This  If the noise£(t) in Eq. (1) is not a dichotomous process

fact leads to the occurrence &fDirac contributiongmoving ~ the “partition” of the bracket involved in going from Eg.

away from the initial conditionin the one-time probability (12) to Eq. (13) is not exact, therefore Eq14) is only an

distribution P(V,t): this issue has been seen, for examme,approxmauon. As a matter of fact, Bourret called this pro-

when solving the simpler sdié= £(t) driven by a dichoto- cedure the one-ficton approximation, and later on it was rec-

. . . ognized that a rigorous perturbation theory should be done in
mous noise and in the presence of special boundary cond|h b ber? h )
tions [12]. the Kubo number“T,,. In any case, the one-ficton ap-

By computing the normalization constaif in the do- proximation, or the leading order in the Kubo number, in-

main D= —aly: +aly], the stationary probability distribu- volves in an essential way the two-time correlation function
tion (17) can bZ’ writtgn, in the form yPp y x(7) of the stochastic coefficients appearing in the Liouville

equation. Thus in principle, i&(t) is an arbitrary sp the

2

A1 one-ficton approximation can be considered as a first ap-
I'i—+= (My—1) proach to solve this problem, i.e., by adjusting the disper-
y 2 . . . .
P (V)= L4 1— y_2V2 . VeD, sion, 02=<§2>, and the correlation tim&_,, of the noise to
ayaT ﬁ a that of a dichotomous process. If we want to go one step
m v further and consider nonexponential correlation functions, a

(18) possible way is by generalizing the dichotomous noise using
the kangaroo processé€kP) [23]; in fact the KP are Mar-

wherel’(z) is the gamma function. From this expression it is kovian stochastic processes but with arbitrary probability
quite simple to calculate, for example, the second momenyjstributions [for the configurational transition rate(¢)]
(V?) and see that it is in agreement with E§). From this  and correlation functiory(7); however, the amount of alge-
expression it is also possible to see that this anomalous veya involved to tackle this problem could be prohibitive.
locity distribution goes asymptotically to the Maxwellian Thys a qualitative approximation to work out a situation
distribution P(V)=ANe~ W22D it \ve take the simultaneous when the correlation function is nonexponential, could be to
limit: a—o and\—o%, such thata?(2\) 1—D (note that consider the right-hand side of E(L5) even with an arbi-
in this case the cutoff disappears restoring the natural Gaussary functiony(u). On the other hand, and thanks to the fact
ian domain. This limit, of course, corresponds to going from that we can calculate all the cumulants and moments of the
the dichotomous sp to the Gaussian white-noise case. Hesp V(t) [if we know the characteristic functional of the
we should remark that Eq18) fully agrees with the equilib- noise, see Eq2)], we can always compare these exact one-
rium density obtained from different methofik5,17. time moments against the one that we could calculate using
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the distribution coming from the one-ficton approximation; differential equation for the stationary distributidhy(V).
in this way we can test the goodness or not of Bourret'sAs a matter of fact, for smali T, it is possible to see that

approximation. the dominant contribution leads to feactional differential
For example, suppose that the correlation function is a&quation[25], therefore predicting an anomalous velocity
power law of the form distribution. In fact from this “naive” approximation it is
simple to check that the limi—0 (the static limi} is in
Ty Toor agreement with the exact res(t6) in the limit \—0. Due
x(7)= m O<=p<l; to the fact that this limit is the worst situation for the one-

ficton approximatiori26], we expect that from our fractional
a similar long range correlation function was also used tdifferential equation we could get some insight in under-
model anomalous diffusion in a random velocity fi¢2#]. standing the fascinating issue of the occurence of anomalous

The Laplace transform of(7) is given by velocity distributions. Work along these lines is in progress.
X(W) =T o(UT o) L€ TeorT (1 — 1, UTeory), ACKNOWLEDGMENTS
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ret the stochastic Liouville equatidby the way he used this

is the incomplete gamma function. Introducing this functionLiouville equation [27] before van Kampen proved his
x(u) in Eqg. (15) it is simple to work out an approximate lemma[7]).

T(v,x)=f t*"le ldt, x>0,
X
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