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Computing a non-Maxwellian velocity distribution from first principles

Manuel O. Ca´ceres*
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We investigate a family of single-particle anomalous velocity distribution by solving a particular class of
stochastic Liouville equations. The stationary state is obtained analytically and the Maxwell-Boltzmann distri-
bution is reobtained in a particular limit. We discuss the comparison with other different methods to obtain the
stationary state. Extensions when the models cannot be solved in an exact way are also pointed out in
connection with the one-ficton approximation.
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I. INTRODUCTION

In recent years there has been an increasing intere
understanding anomalous velocity distributions~non-
Maxwellian! that appear—quite ubiquitously—in many di
ferent subjects of science; for example, in the study of ou
equilibrium ~vibrated! granular matter@1#, in the analysis of
out of equilibrium rodlike thermal molecules rotating free
in a plane@2,3#, and in the study of physiological system
@4#, etc. In many of these cases the correlation function@of
the relevant variableV(t)] decays in time with some
stretched exponential function; in a similar context, the pr
ability distributions show non-Maxwellian profiles, or the
can also show long tails in the configurational velocity spa
V.

It is well known that the Maxwell~Boltzmann! distribu-
tion can be derived by various statistical methods@5#. In
particular, the time evolution of the single-particle Maxwe
distribution can be analyzed by using the Langevin equa
or equivalently by using the Fokker-Planck scheme@6#; in
both approaches the important points are that the ‘‘dyna
ics’’ for the velocity is linear and the fluctuations from th
thermal bathare Gaussian. Therefore—as expected—the
locity distribution of the Rayleigh particle is Gaussian at
times. A signature of this model is thesingular character of
the random acceleration that the Rayleigh particle feels fr
the thermal bath; of course this is a necessary conditio
order to have a Markovian stochastic process~sp! V(t). In
other words, the white-noise nature of the random accel
tion leads to a nonvanishing diffusivity

D5 lim
Dt→0

^DV2&
Dt

.

This is nothing more than a necessary condition to obtain
Fokker-Planck equation.

On the other hand, if we assume ageneralizedRayleigh
particle with a more ‘‘realistic’’ correlation function assoc
ated to some external noise, let us say, for example, a co
noise correlation function:x(t)5a2exp(22lutu), the diffu-
sivity constantD vanishes. It is simple to prove that using
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color noise the only way to get nonvanishing diffusivity is
the simultaneous limit:a2→` andl→`, in such a way that
a2(2l)215D ~but this is just the white-noise case!. Note
that it is a quite different matter to define a new Mark
process Ṽ(t) to mimic—in the best way—the non
Markovian oneV(t). It is well known that such a Markov sp
Ṽ(t) exists and fulfills~in the leading order! a Fokker-Planck
equation with arenormalizeddiffusivity D5a2/(g12l)
~see appendix D of van Kampen’s paper@8#!. Therefore if we
want to find a ‘‘softer’’ description for the random acceler
tions of thegeneralizedRayleigh particle, we should lift the
hypothesis of Gaussian noise; this fact will immediately le
to a non-Maxwellian~anomalous! velocity profile; for ex-
ample, anatural cutoff for the velocity distribution will ap-
pear if the random accelerations are finite.

In the context of ageneralizedRayleigh particle we have
studied the time relaxation of its correlation function, and
have proved that if we model the stochastic processV(t) by
a generalized Ornstein-Uhlenbeck process, where the fl
tuations of the bath are characterized by any arbitrary no
j(t) ~not necessarily Gaussian!, the exact solution of the
system is given in terms of the characteristic function
GV„@z(•)#…; i.e., let the stochastic differential equation~sde!
of the process be

dV

dt
52gV1j~ t !, g.0, ~1!

where j(t) is an arbitrary noise characterized by its fun
tional

Gj„@k~• !#…5K expi E
0

`

k~ t !j~ t ! dtL
P„[ j(•)] …

;

here the notationGj„@k(•)#… emphasizes thatk(t) is a test
function. Then the functional of the processV(t) is given by
@9,10#

GV„@z~• !#…5e1 ik0V0GjS F E
t

`

eg(t2s)z~s! dsG D , ~2!

whereV0 is the initial condition of the spV(t) and k0 is a
functional of the test function z(t), given by k0

5*0
`e2gsz(s)ds.
©2003 The American Physical Society02-1
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The exact formula~2! solves the problem in a closed wa
but of course the difficulty lies in the fact that there are n
so many closed expressions for the noise characteristic f
tional Gj„@k(•)#…. Among the many cases that we have be
able to work out are: linear sde driven by Le´vy noise@11#,
sde associated with special boundary conditions@12#, and
also second-order sde driven by arbitrary noises@13#, etc. In
all of these cases we have been able to calculate correla
functions and higher-order moments and cumulants. In
paper, the problem that we want to tackle is different beca
we want to know something more about the associated p
ability distributions, particularly we are interested in the on
time probability densityP(V,t) in order to see whether it
behavior is anomalous or not. Note that if we had a clo
expression for the functionalGj„@k(•)#…, the probability
density P(V,t) could be obtained by quadrature from E
~2!, i.e., by Fourier inversion,

P~V1 ,t1!5
1

2pE2`

`

GV„@z~• !5k1d~ t2t1!#…

3exp~2 ik1V1!dk1 . ~3!

From this formula, and for any noisej(t), we can calculate
in an exact mannerall the one-time cumulants of spV(t).
We emphasize that the probability distributionP(V1 ,t1) de-
pends on the initial conditionV(t050)5V0, note however,
that due to the intrinsic preparation of the system, this dis
bution is not the propagator:P(V1 ,t1uV0 ,t0); this is so be-
cause in general the system could be non-Markovian. In
ticular, in Ref. @13# we have found theexact stationary
nonequilibrium probability distributionPst(V), for the gen-
eral case when the noise is Gaussian and the correlation
arbitrary functionx(t) ~not necessarily exponential!. Then,
for example, it is possible to see that the one-time probab
distribution is Gaussian—as expected—but the dispers
^V(t)2&, strongly depends on the character of the correlat
function of the bath, in particular this fact leads to the de
nition of stronglyor weakly non-Markoviandynamics.

II. MODELING THE THERMAL BATH WITH
DICHOTOMOUS NOISE: EXACT RESULTS

If the noisej(t) is a dichotomous process, characteriz
by a hopping transition ratel, all the cumulants of spV(t)
can be calculated. Nevertheless, because the characte
functional of this noise cannot be expressed in a closed f
†it is only possible to write down a series expression
Gj„@k(•)#… @9#‡, we cannot easily calculate the associa
one-time probability distribution using Eq.~3!; so here we
are going to tackle this problem from a different point
view. Before going ahead with this program we would like
remark that a dichotomous sp is a good candidate to mod
thermal bath when thefinite character of the random acce
erations and the nonwhite correlation of the noise are imp
tant facts to be considered.

If the noisej(t) in Eq. ~1! is a symmetric Langevin-like
force ~producing finite accelerations!, it is quite natural to
model thethermal bathwith a dichotomous noise of value
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6a; then its stationary correlation function is

^j~ t1t!j~ t !&5a2exp~22lutu!. ~4!

Introducing the series expression ofGj„@k(•)#… in Eq. ~2!,
for example, we have shown that the stationary two-po
correlation function of the spV(t) can written in the form@9#

^^V~ t1t!V~ t !&&5
a2

g~2l1g!
e2gutu. ~5!

In general, higher-order cumulants can also be obtained
taking higher-order functional derivatives of lnGV„@z(•)#….
Nevertheless, to write the corresponding probability distrib
tion from the information of all these moments is a nontriv
task, thus we are going to bypass this difficulty by introdu
ing an alternative procedure, which in principle is useful—
least—for the one-time probability distribution.

A. Computing the probability distribution

In order to calculate the evolution equation of the on
time probability distributionP(V,t), we start from the sto-
chastic Liouville equation associated to Eq.~1!, so defining
r(V,t)5d„V2V@ t,j(•)#… we have

]r~V,t !

]t
1

]

]V
@V̇r~V,t !#50,

which is equivalent to

]r~V,t !

]t
1

]

]V
@$2gV1j~ t !%r~V,t !#50. ~6!

Using van Kampen’s lemma@6,7# it follows that the evolu-
tion equation for the distribution

P~V,t !5^d„V2V@ t,j~• !#…&

is

]P~V,t !

]t
2g

]

]V
@VP~V,t !#52 K j~ t !

]

]V
r~V,t !L , ~7!

where the average is over the ensembleP„@j(•)#…. In order
to work out this equation we first solve the following Gree
problem:

F ]

]t
2g2gV

]

]VGG~V,V1 ;t2t1!5d~V2V1!d~ t2t1!,

~8!

where the corresponding Green function is given by

G~V,V1 ;t2t1!5eg(t2t1)d@Veg(t2t1)2V1#Q~ t2t1!,
~9!

andQ(t) is the step function.
The integral solution of Eq.~6! can be written, with the

help of the Green function~9!, in the form
2-2
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r~V,t !5r0~V,t !2E
2`

1`

dV1E
0

t

dt1G~V,V1 ;t2t1!j~ t1!
]

]V1
r~V1 ,t1!, ~10!

where@]/]t2g2gV(]/]V)#r0(V,t)50. Now we can introduce Eq.~10! into the right-hand side of Eq.~7!,

]P~V,t !

]t
2g

]

]V
@VP~V,t !#52 K j~ t !

]

]V
r0~V,t !L 1K j~ t !

]

]VE2`

1`

dV1E
0

t

dt1G~V,V1 ;t2t1!j~ t1!
]r~V1 ,t1!

]V1
L . ~11!

Working out the ensemble average we arrive at

]P~V,t !

]t
2g

]

]V
@VP~V,t !#5E

2`

1`

dV1E
0

t

dt1G~V,V1 ;t2t1!eg(t2t1)K j~ t !j~ t1!
]2r~V1 ,t1!

]V1
2 L , ~12!

where we have used the fact that in the integral we can replace]/]V→eg(t2t1)(]/]V1). Now, because the noisej(t) is a
dichotomous sp we can use the Bourret-Frisch-Pouquet theorem@14,15# to split the average in two parts; and thus we get
following exactequation:

]P~V,t !

]t
2g

]

]V
@VP~V,t !#5E

2`

1`

dV1E
0

t

dt1G~V,V1 ;t2t1!eg(t2t1)^j~ t !j~ t1!&
]2P~V1 ,t1!

]V1
2

. ~13!
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Integrating overdV1, changing the variablet5t2t1, and
using the fact that the correlation function is stationa
^j(t)j(t1)&[x(t2t1), we can write

]P~V,t !

]t
2g

]

]V
@VP~V,t !#5E

0

t

x~t!
]2

]V2
P~Vegt,t2t!dt.

Now, introducing the operator identity:P(Vegt,t2t)
5exp@gtV(]/]V)#P(V,t2t), and using that

]2

]V2 S V
]

]VD n

5S V
]

]V
12D n ]2

]V2
, n50,1,2, . . . ,

from Eq. ~13!, after some algebra, we finally obtain

]P~V,t !

]t
2g

]

]V
@VP~V,t !#5E

0

t

x~t!expFgtS V
]

]V
12D G

3
]2P~V,t2t!

]V2
dt. ~14!

This is the exact evolution equation for the one-time pro
ability distribution of the generalized Ornstein-Uhlenbe
process~1!, when the thermal bath is modeled by a symm
ric dichotomous noise. Now with the help of the Lapla
transform,*0

`e2utf (t)dt[Lu@ f (t)#[ f̂ @u#, we can rewrite
this equation in the form

uP̂~V,u!2P~V,0!2g
]

]V
@VP̂~V,u!#

5x̂Fu2gS V
]

]V
12D G]2P̂~V,u!

]V2
. ~15!
01610
-
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This formula is useful to calculate the stationary distributi
of the spV(t), i.e.,

Pst~V![P~V,t→`!5 lim
u→0

uP̂~V,u!.

Therefore using Eq.~15! and the Laplace transform of th
correlation function~4!,

x̂~u![Lu@a2exp~22lutu!#5a2~u12l!21,

the stationary differential equation for the probability dist
bution adopts the form

H F2gS V
]

]V
12D12lG S 2g

]

]V
VD J Pst~V!5a2

]2Pst~V!

]V2
.

~16!

To find the solution of this equation we try a normalize
function of the form

Pst~V!5N~12BV2!A. ~17!

Note that, in order to have a well defined probability dist
bution Pst(V) some care must be taken in the definition
the domain of the distribution. Inserting Eq.~17! in Eq. ~16!
2-3
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and using that (12BV2)Þ0, it is possible to prove, for any
A.21, that the constantsB andA are given by

B5
g2

a2
and A5

l

g
21.

This implies a natural cutoff in the domain of the velocit
which is characterized by the valueVd56a/g @this is a
clear consequence of the signature of thefinite random ac-
celerations occurring in the sde~1!#. On the other hand the
distribution Pst(V) will be a convex or concave functio
depending on the value of the ratel/g; both behaviors can
be understood heuristically. The casel/g!1 means that the
noise correlation}l21 is large compared to the dissipatio
time scale}g21, then the noise can be considered stron
persistent~static limit! so we can approximatej(t) by a con-
stant in the sde~1!; from this fact it follows that asymptoti-
cally uVu;a/g. Therefore, the invariant measure shows
divergence at the points6a/g. The opposite case,l/g.1,
applies when the noise is a fluctuating process on the d
pative time scale, and then it is highly improbable to rea
the extreme ‘‘deterministic’’ valuesVd56a/g; that is the
reason why, whenl/g.1, the stationary probability distri
bution goes suddenly to zero forV→Vd .

It should be emphasized that the time-dependent struc
of the corresponding one-time probability distributio
P(V,t) is highly complex due to the occurrence of ra
events; these events correspond to the stochastic realiza
when the dichotomous noise is constant for a long time
fore jumping—for the first time—to a different value. Th
fact leads to the occurrence ofd-Dirac contributions~moving
away from the initial condition! in the one-time probability
distribution P(V,t); this issue has been seen, for examp
when solving the simpler sdeẊ5j(t) driven by a dichoto-
mous noise and in the presence of special boundary co
tions @12#.

By computing the normalization constantN, in the do-
mainD5@2a/g;1a/g#, the stationary probability distribu
tion ~17! can be written in the form

Pst~V!5

gGS l

g
1

1

2D
aApGS l

g D S 12
g2

a2
V2D (l/g21)

, VPD,

~18!

whereG(z) is the gamma function. From this expression it
quite simple to calculate, for example, the second mom
^V2& and see that it is in agreement with Eq.~5!. From this
expression it is also possible to see that this anomalous
locity distribution goes asymptotically to the Maxwellia
distribution P(V)5Ne2gV2/2D if we take the simultaneou
limit: a→` and l→`, such thata2(2l)21→D ~note that
in this case the cutoff disappears restoring the natural Ga
ian domain!. This limit, of course, corresponds to going fro
the dichotomous sp to the Gaussian white-noise case. H
we should remark that Eq.~18! fully agrees with the equilib-
rium density obtained from different methods@16,17#.
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It is interesting to remark that even when the two-po
correlation function~5! does not show any ‘‘strange’’ behav
ior, the corresponding two-time joint probability distributio
should do so. This fact is simple to understand consider
the one-time probability distribution; for example, if we ca
culate the one-time moments^V(t)n&,;n we would not see
any strange behavior; it is only when we sum all the m
ments appearing in Eq.~3! that an anomalous behavior
built up in its one-time probability distribution, as shown
the corresponding stationary distribution~18!.

An important question is whether it is possible to fin
another family of anomalous velocity distributions from fir
principles as we have shown here. Unfortunately, only f
stochastic processes can be worked out exactly as we
done with the dichotomous sp, thus if we want to go ahe
with this program we should implement some stochastic p
turbation theory. This fact has extensively been worked
since the pioneer work of Kraichnan when he studied
problem of turbulence@18#, Bourret in the study of wave
propagation in random media@19#, Kubo when he tackled
the problem of linear stochastic differential equations@20#,
or by using van Kampen’s cumulant expansion@21#. A rig-
orous review showing the ‘‘evolution’’ of the stochastic pe
turbation theory can be seen in Ref.@22#. In the following
section we discuss briefly a possible way of working th
program.

B. Discussion

If the noisej(t) in Eq. ~1! is not a dichotomous proces
the ‘‘partition’’ of the bracket involved in going from Eq
~12! to Eq. ~13! is not exact, therefore Eq.~14! is only an
approximation. As a matter of fact, Bourret called this pr
cedure the one-ficton approximation, and later on it was r
ognized that a rigorous perturbation theory should be don
the Kubo numbers2Tcorr. In any case, the one-ficton ap
proximation, or the leading order in the Kubo number,
volves in an essential way the two-time correlation functi
x(t) of the stochastic coefficients appearing in the Liouvi
equation. Thus in principle, ifj(t) is an arbitrary sp the
one-ficton approximation can be considered as a first
proach to solve this problem, i.e., by adjusting the disp
sion,s25^j2&, and the correlation timeTcorr of the noise to
that of a dichotomous process. If we want to go one s
further and consider nonexponential correlation functions
possible way is by generalizing the dichotomous noise us
the kangaroo processes~KP! @23#; in fact the KP are Mar-
kovian stochastic processes but with arbitrary probabi
distributions @for the configurational transition ratel(j)]
and correlation functionx(t); however, the amount of alge
bra involved to tackle this problem could be prohibitiv
Thus a qualitative approximation to work out a situati
when the correlation function is nonexponential, could be
consider the right-hand side of Eq.~15! even with an arbi-
trary functionx̂(u). On the other hand, and thanks to the fa
that we can calculate all the cumulants and moments of
sp V(t) @if we know the characteristic functional of th
noise, see Eq.~2!#, we can always compare these exact on
time moments against the one that we could calculate u
2-4
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the distribution coming from the one-ficton approximatio
in this way we can test the goodness or not of Bourre
approximation.

For example, suppose that the correlation function i
power law of the form

x~t!5
G2 Tcorr

21

~11t/Tcorr!
m

, 0<m,1;

a similar long range correlation function was also used
model anomalous diffusion in a random velocity field@24#.
The Laplace transform ofx(t) is given by

x̂~u!5G2~uTcorr!
m21euTcorrG~12m,uTcorr!,

where

G~v,x!5E
x

`

tn21e2tdt, x.0,

is the incomplete gamma function. Introducing this functi
x̂(u) in Eq. ~15! it is simple to work out an approximat
ith
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er
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differential equation for the stationary distributionPst(V).
As a matter of fact, for smalluTcorr, it is possible to see tha
the dominant contribution leads to afractional differential
equation @25#, therefore predicting an anomalous veloci
distribution. In fact from this ‘‘naive’’ approximation it is
simple to check that the limitm→0 ~the static limit! is in
agreement with the exact result~16! in the limit l→0. Due
to the fact that this limit is the worst situation for the on
ficton approximation@26#, we expect that from our fractiona
differential equation we could get some insight in und
standing the fascinating issue of the occurence of anoma
velocity distributions. Work along these lines is in progre
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@9# M.O. Cáceres and A. A Budini, J. Phys. A30, 8427~1997!.

@10# This characteristic functional gives the possibility to build
the complete set ofn-time joint probability distribution, i.e.,
the Kolmogorov hierarchy.
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